
Algorithms for Surface Graphs

Jeff Erickson
University of Illinois, Urbana-Champaign

CIMAT, Guanajuato, Mexico
September 11, 2018

Please ask questions!

Surface maps

Surfaces = 2-manifolds

‣ Connected, compact, Hausdorff space in which every point
has a neighborhood homeomorphic to the plane.

‣ An orientable surface does not contain a Möbius band.

Surface classification

Every orientable surface is homeomorphic to a sphere with g
handles, for some integer g≥0, called its genus.

Roger Penrose, The Road to Reality (2004)

Surface map

‣ Graph embedded on a surface so that each face is a disk

‣ Equivalently: Polygons glued together into a closed surface

[Riemann 1857; Heawood 1890; Poincaré 1895; Heffter 1898;
Dehn Heegaard 1907; Kerékjártó 1923; Radó 1937; Edmonds 1960;

Youngs 1963; Gross Tucker 1987 ; Mohar Thomassen 2001;]

Surface map

‣ The standard surface representation in graphics and
geometric modeling....

[Pellenard Morvan Alliez ’12]

‣ The standard surface representation in graphics and
geometric modeling, but without vertex coordinates

Surface map

Map duality

Every surface map Σ = (V, E, F) has a natural dual map Σ* =
(F*, E*, V*) on the same surface:
‣ vertices of Σ* = faces of Σ
‣ edges of Σ* = edges of Σ
‣ faces of Σ* = vertices of Σ

u*

v*

f* g*f g

u

v

Map duality

Map duality

Map duality

‣ The cyclic order of edges incident to each vertex completely
specifies the surface map (up to homeomorphism).

‣ We can use standard graph data structures to represent both
a surface map Σ and its dual Σ*.

Rotation systems

w
z

x

y

v

u w

z

x

y

v

u w yz v

u x

u x z z

v y w

x u z

z y wwu z

u

v

w

x

y

z

Euler’s formula

‣ For every map (V, E, F) on the orientable surface of genus g:

‣ χ := 2–2g is the Euler characteristic of the map / surface.

‣ In particular, a map is planar if and only if V – E + F = 2.

V – E + F = 2 – 2g

[Descartes c.1630 (via Leibniz 1676 (via Foucher de Careil 1859)),
Euler 1750, Euler 1753, Karsten 1768, Meister 1784,

Legendre 1794, Hirsch 1807, l’Huillier 1811, Cauchy 1811,
Grunert 1827, Von Staudt 1847, Cayley 1861, Listing 1861, ...]

Easy consequences

‣ Surface triangulations: E = 3V–6+6g and F = 2V–4+4g

‣ Simple surface graphs: E ≤ 3V–6+6g and F ≤ 2V–4+4g

‣ Typically assume g=O(V), so that E=O(V) and F=O(V)

‣ Every simple surfave graph has vertex of degree O(1 + g/V)
▹ At most 6 if g < V/12
▹ Minimum spanning trees in O(V) time if g = O(V)

Today’s Question

Given a surface Σ, find the shortest
topologically nontrivial cycle in Σ.

Trivial cycles

‣ contractible = null-homotopic = boundary of a disk

‣ separating = null-homologous = boundary of a subsurface

separating
noncontractible

separating
contractible

nonseparating
noncontractible

Surface reconstruction

Surface reconstruction

point cloud

scan
object

reconstruct
surface

Surface reconstruction

point cloud

scan
object

Topological noise

‣Measurement errors from the scanning device add extra
handles/tunnels to the reconstructed surface.

An Out-of-core Algorithm for Isosurface Topology

Simplification

Zoë Wood

Caltech

Hugues Hoppe

Microsoft Research

Mathieu Desbrun

U. of So. Cal.

Peter Schröder

Caltech

Many high-resolution surfaces are created through isosurface extraction from volumetric repre-
sentations, obtained by 3D photography, CT, or MRI. Noise inherent in the acquisition process
can lead to geometrical and topological errors. Reducing geometrical errors during reconstruction
is well studied. However, isosurfaces often contain many topological errors in the form of tiny
handles. These nearly invisible artifacts hinder subsequent operations like mesh simplification,
remeshing, and parametrization. In this paper we present an e⇥cient method for removing han-
dles in an isosurface. Our algorithm makes an axis-aligned sweep through the volume to locate
handles, compute their sizes, and selectively remove them. The algorithm is designed for out-of-
core execution. It finds the handles by incrementally constructing and analyzing a surface Reeb
graph. The size of a handle is measured by a short surface loop that breaks it. Handles are
removed robustly by modifying the volume rather than attempting “mesh surgery.” Finally, the
volumetric modifications are spatially localized to preserve geometrical detail. We demonstrate
topology simplification on several complex models, and show its benefit for subsequent surface
processing.

Categories and Subject Descriptors: I.3.0 [Computer Graphics]:

General Terms: Algorithms, Performance

Additional Key Words and Phrases: topological artifacts, genus reduction, surface reconstruction,
marching cubes.

1. INTRODUCTION

Highly accurate geometric models of physical objects are often acquired through discrete

scanning techniques. For example, models are commonly obtained using laser range scan-

ners, computed tomography (CT) or magnetic resonance imaging (MRI). Laser range scan-

ners achieve full coverage of complex objects by acquiring and merging multiple scans.

Many surface reconstruction algorithms perform the merging of scanned data using a vol-

umetric grid representation, in which the model is represented as the zero-contour of its

sampled distance function, i.e., as an isosurface [Curless and Levoy 1996; Hilton et al.

1996; Hoppe et al. 1992; Levoy and others 2000]. Similarly, CT or MRI produce data

volumes from which isosurfaces are extracted [Lorensen and Cline 1987].

Fig. 1. Sequence of progressively closer views revealing an extraneous handle in the Buddha mesh.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY, Pages 1–??.[Wood, Hoppe, Desbrun, Schröder ’04]

Topological noise

‣ These extra tunnels make compression difficult.

[Wood, Hoppe, Desbrun, Schröder ’04]

genus 104 genus 104
50K vertices

genus 6
50K vertices

Connections

‣ Length of shortest noncontractible cycle
▹ systole [Loewner ’49] [Pu ’52] ... [Gromov 83] ...
▹ representativity [Robertson, Seymour 87]

▹ edge-width [Thomassen 90; Mohar, Thomassen 99]

‣ First step of many other topological graph algorithms

‣ Related to broader problems in topological data analysis
▹ Coverage analysis of ad-hoc/sensor networks
▹ Identifying (un)important topological features in high-dimensional

data sets

“Given”?

‣ Input:
▹ Orientable surface map Σ with complexity n and genus g.
▹ Length ℓ(e)≥0 for every edge of Σ

“Given”?

‣ Input:
▹ Orientable surface map Σ with complexity n and genus g.
▹ Length ℓ(e)≥0 for every edge of Σ

‣ Output:
▹ Minimum-length cycle in the graph of Σ that is noncontractible or

nonseparating in Σ.

Tree-cotree structures

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:
‣ A spanning tree T
‣ A spanning cotree C — C* is a spanning tree of G*
‣ Leftover edges L := E \ (C∪T) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:
‣ A spanning tree T
‣ A spanning cotree C — C* is a spanning tree of G*
‣ Leftover edges L := E \ (C∪T) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:
‣ A spanning tree T
‣ A spanning cotree C — C* is a spanning tree of G*
‣ Leftover edges L := E \ (C∪T) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Tree-cotree decomposition

A partition of the edges into three disjoint subsets:
‣ A spanning tree T
‣ A spanning cotree C — C* is a spanning tree of G*
‣ Leftover edges L := E \ (C∪T) — Euler’s formula implies |L| = 2g

[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]

Fundamental loops and cycles

‣ Fix a tree-cotree decomposition (T, L, C) and a basepoint x.

‣ Each nontree edge e defines a fundamental loop loop(T, e)

‣ Each nontree edge e defines a fundamental cycle cycle(T, e)

x

e

x

e

Tree-cotree structures

‣ System of cycles {cycle(T, e) | e ∈ L}
▹ 2g simple cycles
▹ Basis for the first homology group H1(Σ)

Tree-cotree structures

‣ Cut graph T∪L = Σ\C

‣ Remove degree-1 vertices ⇒ reduced cut graph
▹ Minimal subgraph with one face
▹ Composed of at most 3g cut paths meeting at most 2g branch points

Tree-cotree structures

‣ Often useful to build these structures in the dual map Σ*.

‣ Every noncontractible cycle in Σ crosses every (dual)
reduced cut graph at least once.

‣ Every nonseparating cycle in Σ crosses at least one cycle in
every (dual) system of cycles.

Shortest nontrivial cycles

Three-path condition

‣ Any three paths with same endpoints define three cycles.

‣ If any two of these cycles are trivial, so is the third.

[Thomassen 1990]

Three-path condition

‣ The shortest nontrivial cycle consists of two shortest paths
between any pair of antipodal points.

‣ Otherwise, the actual shortest path would create a shorter
nontrivial cycle.

[Thomassen 1990]

Greedy tree-cotree decomposition

‣ Assume edges have non-negative lengths ℓ(e) ≥ 0

‣ T = shortest-path tree in Σ with arbitrary source vertex x

‣ C* = maximum spanning tree of Σ* where w(e*) = ℓ(loop(T,e))

‣ Computable in O(n log n) time using textbook algorithms.
▹ O(n) time if all lengths = 1
▹ O(n) time if g=O(n1–ε) [Henzinger et al. ’97]

[Eppstein 2003, Erickson Whittlesey 2005]

Shortest nontrivial loops

‣ Build greedy tree-cotree decomposition (T, L, C) based at x.
‣ Build dual cut graph X* = L*∪C*

‣ Reduce X* to get R*

[Erickson Har-Peled 2005]

‣ 3-path condition ⇒ We want loop(T, e) for some e∉T
‣ loop(T, e) is noncontractible iff e*∈R*
‣ loop(T, e) is nonseparating iff R*\e* is connected

Shortest nontrivial loops

[Erickson Har-Peled 2005]
[Cabello, Colin de Verdière, Lazarus 2010]

Shortest non-trivial cycle

‣ For each basepoint: O(n log n) time.

‣ Try all possible basepoints: O(n2 log n) time.

[Erickson Har-Peled 2005]

Shortest non-trivial cycle

‣ For each basepoint: O(n log n) time.

‣ Try all possible basepoints: O(n2 log n) time.

‣ This is the fastest algorithm known.

▹ Significant improvement would also improve the best time to
compute the girth of a sparse graph: O(n2) = BFS at each vertex  
[Itai Rodeh 1978]

▹ Computing the girth of a dense graph is at least as hard as all-pairs
shortest paths and boolean matrix multiplication. 
[Vassilevska Williams, Williams 2010]

[Erickson Har-Peled 2005]

One-cross lemmas

‣ The shortest nontrivial cycle crosses any shortest path at
most once

‣ Otherwise, we could find a shorter nontrivial cycle!

One-cross lemmas

‣ Let γ* be the shortest nonseparating cycle, and let γ be any
cycle in a greedy system of cycles.

‣ Then γ* and γ cross at most once.

[Cabello Mojar 2005]

Faster algorithm

To compute the shortest nonseparating cycle:
▹ Compute a greedy system of cycles γ1, γ2, ..., γ2g

▹ For each i, find the shortest cycle that crosses γi exactly once

[Cabello Chambers 2007]

Faster algorithm

‣ To find the shortest cycle that crosses γi exactly once:
▹ Cut the surface open along γi. Resulting surface Σ✂γi has two copies

of γ on its boundary.

▹ Find the shortest path in Σ✂γi between the clones of each vertex of γi

[Cabello Chambers 2007]

Please ask questions!

Multiple-Source Shortest Paths

[Free Gruchy (“Slow-Mo Guys”) 2018]

Multiple-Source Shortest Paths

[Free Gruchy (“Slow-Mo Guys”) 2018]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Multiple-Source Shortest Paths

‣ Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.

[Klein 2005]

Naïve algorithm

‣ For each boundary vertex s, compute the shortest-path tree
rooted at s in O(n log n) time. [Dijkstra 1956]

‣ The overall algorithm runs in O(n2 log n) time.

‣ But in fact, we can (implicitly) compute all such distances in
just O(gn log n) time.

Faster algorithm

To compute the shortest nonseparating cycle:
▹ Compute a greedy tree-cotree decomposition
▹ Compute a greedy system of cycles γ1, γ2, ..., γ2g

▹ For each i, find the shortest cycle that crosses γi exactly once,  
in O(gn log n) time via MSSP

‣ Overall algorithm runs in O(g2 n log n) time

‣ This is the fastest algorithm known in terms of both n and g.

[Cabello Chambers Erickson 2013]

Planar MSSP

‣ Let’s start with the simplest possible setting.

‣ Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

[Klein 2005]

Planar MSSP

‣ Let’s start with the simplest possible setting.

‣ Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

[Klein 2005]

Planar MSSP

‣ Let’s start with the simplest possible setting.

‣ Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

[Klein 2005]

Planar MSSP

‣ Let’s start with the simplest possible setting.

‣ Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.

[Klein 2005]

Planar MSSP

‣ Intuitively, we want the shortest-path tree rooted at every
boundary vertex.

[Klein 2005]

Planar MSSP

‣ Intuitively, we want the shortest-path tree rooted at every
boundary vertex.

[Klein 2005]

Planar MSSP

‣ In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

[Klein 2005]

Planar MSSP

‣ In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

[Klein 2005]

Planar MSSP

‣ In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

[Klein 2005]

Planar MSSP

‣ In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.

[Klein 2005]

The disk-tree lemma

‣ Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

‣ Deleting any edge splits T into two subtrees R and B.

‣ At most two intervals have one end in R and the other in B.

The disk-tree lemma

‣ Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

‣ Deleting any edge splits T into two subtrees R and B.

‣ At most two intervals have one end in R and the other in B.

The disk-tree lemma

‣ Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

‣ Deleting any edge splits T into two subtrees R and B.

‣ At most two intervals have one end in R and the other in B.

Number of pivots

‣ Each directed edge x→y pivots in at most once.

▹ Consider the tree of shortest paths ending at y.

x

y

Number of pivots

‣ Each directed edge x→y pivots in at most once.

▹ Consider the tree of shortest paths ending at y.

x

y

Number of pivots

‣ Each directed edge x→y pivots in at most once.

▹ Consider the tree of shortest paths ending at y.

x→y pivots in

x→y pivots out

x

y

Number of pivots

‣ So the overall number of pivots is only O(n)!

x→y pivots in

x→y pivots out

x

y

Number of pivots

‣ So the overall number of pivots is only O(n)!

‣ But how do we find these pivots quickly?

x→y pivots in

x→y pivots out

x

y

Please ask questions!

How shortest paths work

‣ Input:
▹ Directed graph G = (V, E)
▹ length ℓ(u→v) for each edge u→v
▹ A source vertex s.

‣ Each vertex v maintains two values:
▹ dist(v) is the length of some path from s to v
▹ pred(v) is the next-to-last vertex of that path from s to v.

[Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

7

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

7

How shortest paths work [Ford 1956]

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

How shortest paths work [Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

7

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

7

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

‣ To relax u→v, set dist(v) = dist(u) + ℓ(u→v) and pred(v) = u

How shortest paths work [Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

4

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

‣ To relax u→v, set dist(v) = dist(u) + ℓ(u→v) and pred(v) = u

How shortest paths work [Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

10

0

7

17

12

3

4

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

‣ To relax u→v, set dist(v) = dist(u) + ℓ(u→v) and pred(v) = u

How shortest paths work [Ford 1956]

‣ Edge u→v is tense iff dist(v) ≥ dist(u) + ℓ(u→v).

‣ If no edges are tense, then dist(v) is the length of the
shortest path from s to v, for every vertex v.

How shortest paths work [Ford 1956]

3 2

1

0 5
10

8

4

4

7
12

3

7

0

4

14

9

3

4

Back to MSSP

‣Maintain the shortest path tree rooted at a point s that is
moving continuously around the outer face.

‣ Also maintain the slack of each edge u→v:
slack(u→v) := dist(u) + ℓ(u→v) – dist(v)

‣ Distances and slacks change continuously with s, but in a
controlled manner.

‣ The shortest path tree is correct as long as slack(u→v)>0
for every edge u→v.

[Cabello Chambers Erickson 2013]

u vs

Distance and slack changes

‣ Red: dist growing
‣ Blue: dist shrinking

[Doppler 1842]
[Fizeau 1848]

u vs

Distance and slack changes

‣ Red: dist growing
‣ Blue: dist shrinking

‣ Red→red: slack constant
‣ Blue→blue: slack constant
‣ Red→blue: slack growing
‣ Blue→red: slack shrinking

[Doppler 1842]
[Fizeau 1848]

u vs

Distance and slack changes

‣ Red: dist growing
‣ Blue: dist shrinking

‣ Red→red: slack constant
‣ Blue→blue: slack constant
‣ Red→blue: slack growing
‣ Blue→red: slack shrinking
▹ active edges

[Doppler 1842]
[Fizeau 1848]

u vs

Tree-cotree decomposition

‣ Complementary dual
spanning tree C* = (G\T)*

‣ Red and blue subtrees are
separated by a path in C*

‣ Active edges are dual to
edges in this path.

[von Staudt 1847]

[Dehn 1936]
[Whitney 1932]

su v

Tree-cotree decomposition

‣ Complementary dual
spanning tree C* = (G\T)*

‣ Red and blue subtrees are
separated by a path in C*

‣ Active edges are dual to
edges in this path.

[von Staudt 1847]

[Dehn 1936]
[Whitney 1932]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

Pivot

‣When slack(u→v) becomes 0, relax u→v

▹ Delete pred(v)→v from T
▹ Insert u→v into T.
▹ Delete (u→v)* from C*.
▹ Insert (pred(v)→v)* into C*
▹ Set pred(u) := v

[Ford 1956]

su v

‣ Vertices can only change from red to blue.

‣ So any edge that pivots into T stays in T.

su v

Pivots

‣ Vertices can only change from red to blue.

‣ So any edge that pivots into T stays in T.

Pivots

su v

Fast implementation

‣We maintain T and C* in dynamic forest data structures that
support the following operations in O(log n) amortized time:

▹ Remove and insert edges:
• CUT(uv), LINK(u,v)

▹ Maintain distances at vertices of T:
• GETNODEVALUE(v), ADDSUBTREE(Δ, v)

▹ Maintain slacks at edges of C*:
• GETDARTVALUE(u︎→v), ADDPATH(Δ, u, v), MinPATH(u, v)

‣ So we can identify and execute each pivot in O(log n)
amortized time.

[Tarjan Werneck 2005]

[Sleator Tarjan 1983]···

Planar MSSP summary

‣We can (implicitly) compute distances from every boundary
vertex to every vertex in any planar map in O(n log n) time!

‣More accurately: Given k vertex pairs, where one vertex of
each pair is on the boundary, we can compute those k
shortest-path distances in O(n log n + k log n) time.

[Klein 2005]

Please ask questions!

Back to surfaces

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Back to surfaces

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Back to surfaces

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Back to surfaces

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Back to surfaces

‣ Let Σ be any surface map with genus g. Fix a face f of Σ.

‣We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.

Same strategy!

‣Move a point s continously around f, maintaining both the
shortest-path tree rooted at s and the complementary
slacks. Whenever a non-tree edge becomes tense, relax it.

[Cabello Chambers Erickson 2013]

Same strategy!

‣Move a point s continously around f, maintaining both the
shortest-path tree rooted at s and the complementary
slacks. Whenever a non-tree edge becomes tense, relax it.

[Cabello Chambers Erickson 2013]

Complementary grove

‣ The dual cut graph X* = (G\T)* is no longer a spanning tree!

‣ Grove decomposition: partition X* into 6g subtrees of G*.
▹ Each subtree contains one dual cut path and all attached “hair”
▹ Maintain each subtree in its own dynamic forest data structure

[Cabello Chambers Erickson 2013]

Where are the pivots?

‣ All active edges are dual to edges in some dual cut path.

‣We can find and execute each pivot using O(g) dynamic
forest operations = O(g log n) amortized time.

[Cabello Chambers Erickson 2013]

How many pivots?

‣ Each directed edge pivots into T at most 4g times.
▹ Generalization of disk-tree lemma
▹ 4g = max # disjoint non-homotopic paths between two points in Σ

‣ So the total number of pivots is O(gn)

[Cabello Chambers Erickson 2013]

Summary

‣ Given any surface map Σ with complexity n and genus g,
with non-negatively weighted edges, and a face f...

‣We can (implicitly) compute shortest-path distances from
every vertex of f to every vertex of Σ in O(gn log n) time

▹ with high probability
▹ or in O(gn log2 n) worst-case
▹ or in O(g2n log n) worst-case

‣ So we can compute shortest nontrivial cycles in 
O(g2n log n) time

[Cabello Chambers Erickson 2013]
[Fox Erickson Lkhamsuren 2018]

Thank you!

[Free Gruchy (“Slow-Mo Guys”) 2018]

Thank you!

[Free Gruchy (“Slow-Mo Guys”) 2018]

