Algorithms for Surface Graphs

Jeff Erickson

University of Illinois, Urbana-Champaign

CIMAT, Guanajuato, Mexico September 11, 2018

Please ask questions!

Surface maps

Surfaces = 2-manifolds

- Connected, compact, Hausdorff space in which every point has a neighborhood homeomorphic to the plane.
- An orientable surface does not contain a Möbius band.

Surface classification

Every orientable surface is homeomorphic to a sphere with g handles, for some integer $g \ge 0$, called its genus.

Roger Penrose, The Road to Reality (2004)

Surface map

- Graph embedded on a surface so that each face is a disk
- Equivalently: Polygons glued together into a closed surface

[Riemann 1857; Heawood 1890; Poincaré 1895; Heffter 1898; Dehn Heegaard 1907; Kerékjártó 1923; Radó 1937; Edmonds 1960; Youngs 1963; Gross Tucker 1987 ; Mohar Thomassen 2001;]

Surface map

 The standard surface representation in graphics and geometric modeling....

[Pellenard Morvan Alliez '12]

Surface map

 The standard surface representation in graphics and geometric modeling, but without vertex coordinates

Every surface map $\Sigma = (V, E, F)$ has a natural *dual* map $\Sigma^* = (F^*, E^*, V^*)$ on the same surface:

- vertices of Σ* = faces of Σ
- edges of Σ^* = edges of Σ
- faces of Σ^* = vertices of Σ

Rotation systems

- The cyclic order of edges incident to each vertex completely specifies the surface map (up to homeomorphism).
- \blacktriangleright We can use standard graph data structures to represent both a surface map Σ and its dual Σ^* .

Euler's formula

For every map (V, E, F) on the orientable surface of genus g:

- $\chi := 2-2g$ is the *Euler characteristic* of the map / surface.
- In particular, a map is *planar* if and only if V E + F = 2.

[Descartes c.1630 (via Leibniz 1676 (via Foucher de Careil 1859)), **Euler 1750**, Euler 1753, Karsten 1768, Meister 1784, Legendre 1794, Hirsch 1807, l'Huillier 1811, Cauchy 1811, Grunert 1827, Von Staudt 1847, Cayley 1861, Listing 1861, ...]

Easy consequences

- Surface triangulations: E = 3V-6+6g and F = 2V-4+4g
- Simple surface graphs: $E \le 3V-6+6g$ and $F \le 2V-4+4g$
- Typically assume g=O(V), so that E=O(V) and F=O(V)
- Every simple surfave graph has vertex of degree O(1 + g/V)
 - \triangleright At most 6 if g < V/12
 - > Minimum spanning trees in O(V) time if g = O(V)

Today's Question

Given a surface Σ , find the shortest topologically nontrivial cycle in Σ .

Trivial cycles

- contractible = null-homotopic = boundary of a disk
- separating = null-homologous = boundary of a subsurface

Surface reconstruction

Surface reconstruction

Surface reconstruction

Topological noise

 Measurement errors from the scanning device add extra handles/tunnels to the reconstructed surface.

[Wood, Hoppe, Desbrun, Schröder '04]

Topological noise

These extra tunnels make compression difficult.

genus 104 50K vertices

genus 6 50K vertices

[Wood, Hoppe, Desbrun, Schröder '04]

Connections

- Length of shortest noncontractible cycle
 - ▷ **systole** [Loewner '49] [Pu '52] ... [Gromov 83] ...
 - representativity [Robertson, Seymour 87]
 - edge-width [Thomassen 90; Mohar, Thomassen 99]
- First step of many other topological graph algorithms
- Related to broader problems in topological data analysis
 - > Coverage analysis of ad-hoc/sensor networks
 - Identifying (un)important topological features in high-dimensional data sets

"Given"?

- Input:
 - \triangleright Orientable surface map Σ with complexity *n* and genus *g*.
 - ▷ Length $l(e) \ge 0$ for every edge of Σ

"Given"?

- Input:
 - \triangleright Orientable surface map Σ with complexity *n* and genus *g*.
 - ▷ Length $l(e) \ge 0$ for every edge of Σ

- Output:
 - \triangleright Minimum-length cycle in the graph of Σ that is noncontractible or nonseparating in $\Sigma.$

A partition of the edges into *three* disjoint subsets:

- A spanning tree **T**
- A spanning cotree $C C^*$ is a spanning tree of G^*
- Leftover edges $L := E \setminus (C \cup T) Euler's$ formula implies |L| = 2g

A partition of the edges into *three* disjoint subsets:

- A spanning tree **T**
- A spanning cotree $C C^*$ is a spanning tree of G^*
- Leftover edges $L := E \setminus (C \cup T) Euler's$ formula implies |L| = 2g

A partition of the edges into *three* disjoint subsets:

- A spanning tree **T**
- A spanning cotree $C C^*$ is a spanning tree of G^*
- Leftover edges $L := E \setminus (C \cup T) Euler's$ formula implies |L| = 2g

A partition of the edges into *three* disjoint subsets:

- A spanning tree **T**
- A spanning cotree $C C^*$ is a spanning tree of G^*
- Leftover edges $L := E \setminus (C \cup T) Euler's$ formula implies |L| = 2g

Fundamental loops and cycles

- ▶ Fix a tree-cotree decomposition (*T*, *L*, *C*) and a *basepoint x*.
- Each nontree edge e defines a fundamental loop loop(T, e)
- Each nontree edge e defines a fundamental cycle cycle(T, e)

▶ System of cycles $\{cycle(T, e) | e \in L\}$

- ▷ 2g simple cycles
- \triangleright Basis for the first homology group $H_1(\Sigma)$

- Cut graph $T \cup L = \Sigma \setminus C$
- ▶ Remove degree-1 vertices ⇒ reduced cut graph
 - Minimal subgraph with one face
 - Composed of at most 3g cut paths meeting at most 2g branch points

- Often useful to build these structures in the dual map Σ^* .
- Every noncontractible cycle in Σ crosses every (dual) reduced cut graph at least once.
- Every nonseparating cycle in Σ crosses at least one cycle in every (dual) system of cycles.

Shortest nontrivial cycles

Three-path condition

- Any three paths with same endpoints define three cycles.
- ▶ If any two of these cycles are trivial, so is the third.

Three-path condition

- The shortest nontrivial cycle consists of two shortest paths between any pair of antipodal points.
- Otherwise, the actual shortest path would create a shorter nontrivial cycle.

Greedy tree-cotree decomposition

- ▶ Assume edges have non-negative lengths $l(e) \ge 0$
- T = shortest-path tree in Σ with arbitrary source vertex x
- $C^* = maximum$ spanning tree of Σ^* where $w(e^*) = l(loop(T,e))$
- Computable in O(n log n) time using textbook algorithms.
 - ▷ O(n) time if all lengths = 1
 - ▷ O(n) time if $g=O(n^{1-\varepsilon})$ [Henzinger et al. '97]

[Eppstein 2003, Erickson Whittlesey 2005]

Shortest nontrivial loops

- ▶ Build greedy tree-cotree decomposition (*T*, *L*, *C*) based at *x*.
- Build dual cut graph X* = L*∪C*
- Reduce X* to get R*

[Erickson Har-Peled 2005]

Shortest nontrivial loops

- ▶ 3-path condition \Rightarrow We want loop(T, e) for some $e \notin T$
- ► loop(T, e) is noncontractible iff e*∈R*
- Ioop(T, e) is nonseparating iff R*\e* is connected

[Erickson Har-Peled 2005] [Cabello, Colin de Verdière, Lazarus 2010]

- ▶ For each basepoint: O(n log n) time.
- Try all possible basepoints: $O(n^2 \log n)$ time.

- ▶ For each basepoint: O(n log n) time.
- Try all possible basepoints: $O(n^2 \log n)$ time.
- This is the fastest algorithm known.
 - Significant improvement would also improve the best time to compute the girth of a sparse graph: O(n²) = BFS at each vertex [Itai Rodeh 1978]
 - Computing the girth of a dense graph is at least as hard as all-pairs shortest paths and boolean matrix multiplication. [Vassilevska Williams, Williams 2010]

One-cross lemmas

- The shortest nontrivial cycle crosses any shortest path at most once
- Otherwise, we could find a shorter nontrivial cycle!

One-cross lemmas

- Let γ* be the shortest nonseparating cycle, and let γ be any cycle in a greedy system of cycles.
- ► Then y* and y cross at most once.

Faster algorithm

To compute the shortest *nonseparating* cycle:

- \triangleright Compute a greedy system of cycles γ_1 , γ_2 , ..., γ_{2g}
- ▷ For each *i*, find the shortest cycle that crosses *y_i* exactly once

- To find the shortest cycle that crosses γ_i exactly once:
 - ▷ Cut the surface open along γ_i . Resulting surface $\Sigma \approx \gamma_i$ has two copies of γ on its boundary.
 - ▷ Find the shortest path in $\Sigma \approx \gamma_i$ between the clones of each vertex of γ_i

Please ask questions!

[Free Gruchy ("Slow-Mo Guys") 2018]

[Free Gruchy ("Slow-Mo Guys") 2018]

Naïve algorithm

- For each boundary vertex s, compute the shortest-path tree rooted at s in O(n log n) time. [Dijkstra 1956]
- The overall algorithm runs in $O(n^2 \log n)$ time.

But in fact, we can (implicitly) compute all such distances in just O(gn log n) time. To compute the shortest nonseparating cycle:

- Compute a greedy tree-cotree decomposition
- \triangleright Compute a greedy system of cycles γ_1 , γ_2 , ..., γ_{2g}
- For each *i*, find the shortest cycle that crosses γ_i exactly once, in O(gn log n) time via MSSP
- Overall algorithm runs in O(g² n log n) time
- ▶ This is the *fastest algorithm known* in terms of both *n* and *g*.

- Let's start with the simplest possible setting.
- Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

- Let's start with the simplest possible setting.
- Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

- Let's start with the simplest possible setting.
- Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

- Let's start with the simplest possible setting.
- Implicitly compute shortest paths in a plane graph G from every boundary vertex to every other vertex.

[Klein 2005]

 Intuitively, we want the shortest-path tree rooted at every boundary vertex.

[Klein 2005]

 Intuitively, we want the shortest-path tree rooted at every boundary vertex.

The disk-tree lemma

- Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals.
- Deleting any edge splits T into two subtrees R and B.
- ▶ At most two intervals have one end in *R* and the other in *B*.

The disk-tree lemma

- Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals.
- Deleting any edge splits T into two subtrees R and B.
- ▶ At most two intervals have one end in *R* and the other in *B*.

The disk-tree lemma

- Let T be any tree embedded on a closed disk. Vertices of T subdivide the boundary of the disk into intervals.
- Deleting any edge splits T into two subtrees R and B.
- ▶ At most two intervals have one end in *R* and the other in *B*.

Number of pivots

- Each directed edge $x \rightarrow y$ pivots in *at most once*.
 - ▷ Consider the tree of shortest paths *ending at* y.

Number of pivots

- Each directed edge $x \rightarrow y$ pivots in *at most once*.
 - ▷ Consider the tree of shortest paths *ending at y*.

Number of pivots

- Each directed edge $x \rightarrow y$ pivots in *at most once*.
 - > Consider the tree of shortest paths ending at y.

Number of pivots

▹ So the overall number of pivots is only O(n)!

Number of pivots

- So the overall number of pivots is only O(n)!
- But how do we find these pivots quickly?

Please ask questions!

[Ford 1956]

Input:

- > Directed graph G = (V, E)
- ▷ length $l(u \rightarrow v)$ for each edge $u \rightarrow v$
- ▷ A source vertex s.
- Each vertex v maintains two values:
 - \triangleright dist(v) is the length of some path from s to v
 - \triangleright pred(v) is the next-to-last vertex of that path from s to v.

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► To relax $u \rightarrow v$, set $dist(v) = dist(u) + \ell(u \rightarrow v)$ and pred(v) = u

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► To relax $u \rightarrow v$, set $dist(v) = dist(u) + \ell(u \rightarrow v)$ and pred(v) = u

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

► To relax $u \rightarrow v$, set $dist(v) = dist(u) + \ell(u \rightarrow v)$ and pred(v) = u

► Edge $u \rightarrow v$ is tense iff $dist(v) \ge dist(u) + \ell(u \rightarrow v)$.

If no edges are tense, then dist(v) is the length of the shortest path from s to v, for every vertex v.

- Maintain the shortest path tree rooted at a point s that is moving continuously around the outer face.
- ► Also maintain the *slack* of each edge $u \rightarrow v$: $slack(u \rightarrow v) := dist(u) + \ell(u \rightarrow v) - dist(v)$
- Distances and slacks change continuously with s, but in a controlled manner.
- The shortest path tree is correct as long as $slack(u \rightarrow v) > 0$ for every edge $u \rightarrow v$.

Distance and slack changes

- Red: dist growing
- Blue: dist shrinking

Distance and slack changes

- Red: dist growing
- Blue: dist shrinking
- ▶ Red→red: slack constant
- Blue→blue: slack constant
- ▶ Red→blue: slack growing
- Blue→red: slack shrinking

Distance and slack changes

- Red: dist growing
- Blue: dist shrinking
- ▶ Red→red: slack constant
- Blue→blue: slack constant
- ▶ Red→blue: slack growing
- Blue→red: slack shrinking
 - b active edges

Tree-cotree decomposition

[von Staudt 1847] [Whitney 1932] [Dehn 1936]

- Complementary dual
 spanning tree C* = (G\T)*
- Red and blue subtrees are separated by a path in C*
- Active edges are dual to edges in this path.

Tree-cotree decomposition

[von Staudt 1847] [Whitney 1932] [Dehn 1936]

- Complementary dual
 spanning tree C* = (G\T)*
- Red and blue subtrees are separated by a path in C*
- Active edges are dual to edges in this path.

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

- When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into *T*.

Pivot

- ▷ Delete $(u \rightarrow v)^*$ from C^* .
- ▷ Insert ($pred(v) \rightarrow v$)* into C*
- \triangleright Set *pred*(*u*) := *v*

- Pivot
- ▶ When $slack(u \rightarrow v)$ becomes 0, relax $u \rightarrow v$
 - ▷ Delete $pred(v) \rightarrow v$ from T
 - ▷ Insert $u \rightarrow v$ into T.
 - ▷ Delete $(u \rightarrow v)^*$ from C^* .
 - ▷ Insert ($pred(v) \rightarrow v$)* into C*
 - \triangleright Set pred(u) := v

Pivots

- Vertices can only change from red to blue.
- ▶ So any edge that pivots into *T* stays in *T*.

Pivots

- Vertices can only change from red to blue.
- ▶ So any edge that pivots into *T* stays in *T*.

Fast implementation

[Sleator Tarjan 1983] : [Tarjan Werneck 2005]

- We maintain T and C* in dynamic forest data structures that support the following operations in O(log n) amortized time:
 - Remove and insert edges:
 - Cut(*uv*), Link(*u*,*v*)
 - ▷ Maintain distances at vertices of *T*:
 - GetNodeValue(v), AddSubtree(Δ , v)
 - Maintain slacks at edges of C*:
 - GetDartValue($u \rightarrow v$), AddPath(Δ, u, v), MinPath(u, v)

 So we can identify and execute each pivot in O(log n) amortized time.

- We can (implicitly) compute distances from every boundary vertex to every vertex in any planar map in O(n log n) time!
- More accurately: Given k vertex pairs, where one vertex of each pair is on the boundary, we can compute those k shortest-path distances in O(n log n + k log n) time.

Please ask questions!

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

- Let Σ be any surface map with genus g. Fix a face f of Σ .
- We want to compute the shortest path trees rooted at every vertex of some "outer" face f.

Move a point s continually around f, maintaining both the shortest-path tree rooted at s and the complementary slacks. Whenever a non-tree edge becomes tense, relax it.

Move a point s continuesly around f, maintaining both the shortest-path tree rooted at s and the complementary slacks. Whenever a non-tree edge becomes tense, relax it.

Complementary grove

- The dual cut graph $X^* = (G \setminus T)^*$ is no longer a spanning tree!
- ▶ Grove decomposition: partition X* into 6g subtrees of G*.
 - > Each subtree contains one dual cut path and all attached "hair"
 - b Maintain each subtree in its own dynamic forest data structure

Where are the pivots?

- ► All active edges are dual to edges in some dual cut path.
- We can find and execute each pivot using O(g) dynamic forest operations = O(g log n) amortized time.

How many pivots?

- Each directed edge pivots into T at most 4g times.
 - > Generalization of disk-tree lemma
 - \triangleright 4g = max # disjoint non-homotopic paths between two points in Σ
- So the total number of pivots is O(gn)

Summary

[Cabello Chambers Erickson 2013] [Fox Erickson Lkhamsuren 2018]

- Given any surface map Σ with complexity n and genus g, with non-negatively weighted edges, and a face f...
- We can (implicitly) compute shortest-path distances from every vertex of f to every vertex of Σ in O(gn log n) time
 - b with high probability
 - ▷ or in O(gn log² n) worst-case
 - ▷ or in O(g²n log n) worst-case
- So we can compute shortest nontrivial cycles in
 O(g²n log n) time

Thank you!

[Free Gruchy ("Slow-Mo Guys") 2018]

Thank you!

[Free Gruchy ("Slow-Mo Guys") 2018]