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Please ask questions!



Surface maps



Surfaces = 2-manifolds

» Connected, compact, Hausdorff space in which every point
has a neighborhood homeomorphic to the plane.

» An orientable surface does not contain a Mobius band.
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Surface classification

Every orientable surface is homeomorphic to a sphere with g
handles, for some integer g=0, called its genus.

Roger Penrose, The Road to Reality (2004)



Surface map

» Graph embedded on a surface so that each face is a disk

» Equivalently: Polygons glued together into a closed surface
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[Riemann 1857; Heawood 1890; Poincaré 1895; Heffter 1898;
Dehn Heegaard 1907, Kerékjarto 1923, Rado 1937; Edmonds 1960;
Youngs 1963; Gross Tucker 1987 ; Mohar Thomassen 20017, ....]



Surface map

» The standard surface representation in graphics and
geometric modeling....
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[Pellenard Morvan Alliez '12]



Surface map

» The standard surface representation in graphics and
geometric modeling, but without vertex coordinates




Map duality

Every surface map X = (V, E, F) has a natural dual map * =
(F*, E*, V*) on the same surface:

» vertices of 2* = faces of &
» edges of 2* = edges of X
» faces of 2* = vertices of 2




Map duality
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Map duality




Rotation systems

» The cyclic order of edges incident to each vertex completely
specifies the surface map (up to homeomorphism).

» We can use standard graph data structures to represent both
a surface map 2 and its dual 2*.
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Euler's formula

» For every map (V, E, F) on the orientable surface of genus g:

» ¥ .= 2—2q is the Euler characteristic of the map / surface.

» In particular,a map is planarif and only if V- E + F = 2.

[Descartes ¢.1630 (via Leibniz 1676 (via Foucher de Careil 1859)),
Euler 1750, Euler1753, Karsten1768, Meister1/784,
Legendre 1794, Hirsch 1807, I'Huillier 1811, Gavchy-18+1,
Grunert-1827 Von Staudt 1847, Cayley 1861, Listing-1861, ...]



Easy consequences

» Surface triangulations: E = 3V-6+6g and F = 2V-4+4g
» Simple surface graphs: E < 3V-6+6g and F < 2V-4+4g
» Typically assume g=0(V), so that E=0(V) and F=0(V)

» Every simple surfave graph has vertex of degree O(1 + g/V)

> Atmost 6ifg<V/12
> Minimum spanning trees in O(V) time if g = O(V)



Today’s Question

Given a surface 2, find the shortest
topologically nontrivial cycle in 2.




Trivial cycles

» contractible = null-homotopic = boundary of a disk

» separating = null-homologous = boundary of a subsurface

nonseparating separating separating
noncontractible noncontractible contractible



Surface reconstruction




Surface reconstruction

Scan
object
point cloud




Surface reconstruction

scan
object
point cloud
reconstruct
surface




Topological noise

» Measurement errors from the scanning device add extra
handles/tunnels to the reconstructed surface.

[Wood, Hoppe, Desbrun, Schréder ‘04]



Topological noise

» These extra tunnels make compression difficult.
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genus 104

50K vertices 50K vertices

[Wood, Hoppe, Desbrun, Schréder ‘04]



Connections

» Length of shortest noncontractible cycle

> systole [Loewner ‘49] [Pu '52] ... [Gromov 83] ...
> representativity [Robertson, Seymour 87]
> edge-width [Thomassen 90; Mohar, Thomassen 99]

» First step of many other topological graph algorithms

» Related to broader problems in topological data analysis
> Coverage analysis of ad-hoc/sensor networks

> Identifying (un)important topological features in high-dimensional
data sets



“Given”?

» Input:
> Orientable surface map % with complexity n and genus g.
> Length 2(e)=0 for every edge of X




“Given”?

» Input:
> Orientable surface map % with complexity n and genus g.
> Length 2(e)=0 for every edge of X

» Output:

> Minimum-length cycle in the graph of > that is noncontractible or
nonseparating in 2.



Tree-cotree structures



Tree-cotree decomposition

A partition of the edges into three disjoint subsets:

» A spanning tree T
» A spanning cotree C — C* is a spanning tree of G*
» Leftover edges L := E\ (CuT) — Euler’s formula implies |L| = 2g
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[von Staudt 1847; Dehn 1936; Biggs 1971; Eppstein 2003]
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Tree-cotree decomposition

A partition of the edges into three disjoint subsets:

» A spanning tree T
» A spanning cotree C — C* is a spanning tree of G*
» Leftover edges L := E\ (CuT) — Euler’s formula implies |L| = 2g
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Fundamental loops and cycles

» Fix a tree-cotree decomposition (7, L, C) and a basepoint x.
» Each nontree edge e defines a fundamental loop loop(T, e)

» Each nontree edge e defines a fundamental cycle cycle(T, e)



Tree-cotree structures

» System of cycles {cycle(T, e) | e € L}
> 2g simple cycles
> Basis for the first homology group H1 (%)




Tree-cotree structures

» Cut graph TUL =2\C
» Remove degree-1 vertices = reduced cut graph

> Minimal subgraph with one face
> Composed of at most 3g cut paths meeting at most 2g branch points
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Tree-cotree structures

» Often useful to build these structures in the dual map >*.

» Every noncontractible cycle in X crosses every (dual)
reduced cut graph at least once.

» Every nonseparating cycle in X~ crosses at least one cycle in
every (dual) system of cycles.
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Shortest nontrivial cycles



Three-path condition [Thomassen 1990]

» Any three paths with same endpoints define three cycles.

» If any two of these cycles are trivial, so is the third.



Three-path condition [Thomassen 1990]

» The shortest nontrivial cycle consists of two shortest paths
between any pair of antipodal points.

» Otherwise, the actual shortest path would create a shorter
nontrivial cycle.



Greedy tree-cotree decomposition

» Assume edges have non-negative lengths ¢(e) = 0
» T = shortest-path tree in 2 with arbitrary source vertex x

» C* = maximum spanning tree of >* where w(e*) = #(loop(T,e))
» Computable in O(n log n) time using textbook algorithms.

> O(n) time if all lengths =1
> O(n) time if g=0(n1-¢) [Henzinger et al. '97]

[Eppstein 2003, Erickson Whittlesey 2005]



Shortest nontrivial loops

» Build greedy tree-cotree decomposition (T, L, C) based at x.
» Build dual cut graph X* = L*uC*

» Reduce X* to get R*
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Shortest nontrivial loops

» 3-path condition = We want loop(T, e) for some e¢T
» loop(T, e) is noncontractible iff e*eR*

» loop(T, e) is nonseparating iff R*\e* is connected
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[Erickson Har-Peled 2005]
[Cabello, Colin de Verdiére, Lazarus 2010]




Shortest non-trivial cycle [Erickson Har-Peled 2005]

» For each basepoint: O(n log n) time.

» Try all possible basepoints: O(n? log n) time.



Shortest non-trivial cycle [Erickson Har-Peled 2005]

» For each basepoint: O(n log n) time.

» Try all possible basepoints: O(n? log n) time.

» This is the fastest algorithm known.

> Significant improvement would also improve the best time to

compute the girth of a sparse graph: O(n2) = BFS at each vertex
[Itai Rodeh 1978]

> Computing the girth of a dense graph is at least as hard as all-pairs

shortest paths and boolean matrix multiplication.
[Vassilevska Williams, Williams 2010]



One-cross lemmas

» The shortest nontrivial cycle crosses any shortest path at
most once

» Otherwise, we could find a shorter nontrivial cycle!
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One-cross lemmas [Cabello Mojar 2005]

» Let y* be the shortest nonseparating cycle, and let y be any
cycle in a greedy system of cycles.

» Then y* and y cross at most once.
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FaStel‘ algorithm [Cabello Chambers 2007]

To compute the shortest nonseparating cycle:
> Compute a greedy system of cycles y1, v2, ..., V2g
> For each j, find the shortest cycle that crosses y; exactly once




FaSteI‘ algorithm [Cabello Chambers 2007]

» To find the shortest cycle that crosses y; exactly once:

> Cut the surface open along y;. Resulting surface ¥s<y; has two copies
of y on its boundary.

> Find the shortest path in X:<y; between the clones of each vertex of y;




Please ask questions!



Multiple-Source Shortest Paths
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[Free Gruchy (“Slow-Mo Guys”) 2018]




Multiple-Source Shortest Paths
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Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.
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Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.
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Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.
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Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.
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Multiple-Source Shortest Paths [Klein 2005]

» Compute shortest paths between many pairs of vertices,
with one vertex of each pair on a fixed “outer” face.




Naive algorithm

» For each boundary vertex s, compute the shortest-path tree
rooted at s in O(n log n) time. [ijkstra 1956]

» The overall algorithm runs in O(n? log n) time.

» But in fact, we can (implicitly) compute all such distances in
just O(gn log n) time.



FaSteI' a|g0rith m [Cabello Chambers Erickson 2013]

To compute the shortest nonseparating cycle:
> Compute a greedy tree-cotree decomposition
> Compute a greedy system of cycles y1, v, ..., V2g

> For each i, find the shortest cycle that crosses y; exactly once,
in O(gn log n) time via MSSP

» Overall algorithm runs in O(g2n log n) time

» This is the fastest algorithm known in terms of both n and g.



Planar MSSP [Klein 2005]

» Let’s start with the simplest possible setting.

» Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.
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» Implicitly compute shortest paths in a plane graph G from
every boundary vertex to every other vertex.




Planar MSSP [Klein 2005]

» Intuitively, we want the shortest-path tree rooted at every
boundary vertex.
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» Intuitively, we want the shortest-path tree rooted at every
boundary vertex.




Planar MSSP [Klein 2005]

» In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.
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Planar MSSP [Klein 2005]

» In fact, we only need to compute the first shortest-path tree,
followed by changes from each tree to the next.
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The disk-tree lemma

» Let T be any tree embedded on a closed disk. Vertices of T
subdivide the boundary of the disk into intervals.

» Deleting any edge splits T into two subtrees R and B.

» At most two intervals have one end in R and the other in B.
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Number of pivots

» Each directed edge x—y pivots in at most once.

> Consider the tree of shortest paths ending at y.
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» Each directed edge x—y pivots in at most once.

> Consider the tree of shortest paths ending at y.

X—y pivots in

X—y pivots out




Number of pivots

» So the overall number of pivots is only O(n)!

X—y pivots in

X—y pivots out




Number of pivots

» So the overall number of pivots is only O(n)!

» But how do we find these pivots quickly?

X—y pivots in

X—y pivots out




Please ask questions!



How shortest paths work [Ford 1956]

» Input:
> Directed graph G = (V, E)
> length #(u—v) for each edge u—v

10
> A source vertex s.
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» Each vertex v maintains two values: 3 O/
0

> dist(v) is the length of some path from stov

A~

> pred(v) is the next-to-last vertex of that path from s to v.



How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).
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How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).

» To relax u—v, set dist(v) = dist(u) + (u—=v) and pred(v) = u
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How shortest paths work [Ford 1956]

» Edge u—v is tense iff dist(v) = dist(u) + #(u—-v).
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» If no edges are tense, then dist(v) is the length of the
shortest path from s to v, for every vertex v.



BaCk tO MSSP [Cabello Chambers Erickson 2013]

» Maintain the shortest path tree rooted at a point s that is
moving continuously around the outer face.

» Also maintain the slack of each edge u—v:
slack(u—v) := dist(u) + (u—-v) — dist(v)

» Distances and slacks change continuously with s, but in a
controlled manner.

» The shortest path tree is correct as long as slack(u—v)>0
for every edge u-v.






[Doppler 1842]

Distance and slack changes [Fizeau 1846]

» Red: dist growing
» Blue: dist shrinking

» Red—red: slack constant

» Blue—blue: slack constant
» Red—blue: slack growing
» Blue—red: slack shrinking




[Doppler 1842]

Distance and slack changes [Fizeau 1846]

» Red: dist growing
» Blue: dist shrinking

» Red—red: slack constant

» Blue—blue: slack constant
» Red—blue: slack growing
» Blue—red: slack shrinking

> active edges



[von Staudt 1847]

Tree-cotree decomposition e 15

[Dehn 1936]

» Complementary dual
spanning tree C* = (G\T)*

» Red and blue subtrees are
separated by a path in C*

» Active edges are dual to
edges in this path.




[von Staudt 1847]

Tree-cotree decomposition e 15

[Dehn 1936]

» Complementary dual
spanning tree C* = (G\T)*

» Red and blue subtrees are
separated by a path in C*

» Active edges are dual to
edges in this path.




PiVOt [Ford 1956]

» When slack(u—v) becomes 0, relax u-v

Delete pred(v)—-v from T
nsert u—vinto T.

Delete (u—v)* from C*.
nsert (pred(v)-v)* into C*

> Set pred(u) :=v

A VAR VA vV
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Delete pred(v)—-v from T
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Pivot [Ford 1956]

» When slack(u—v) becomes 0, relax u-v

Delete pred(v)—-v from T
nsert u—»vinto .
Delete (u—v)* from C*. O

nsert (pred(v)-v)* into C* DA}
> Set pred(u) :=v MZZ/
O
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Pivot [Ford 1956]

» When slack(u—v) becomes 0, relax u-v

Delete pred(v)—-v from T
nsert u—vinto T.

Delete (u—v)* from C*.
nsert (pred(v)-v)* into C*

> Set pred(u) :=v

A VAR VA vV




Pivots

» Vertices can only change from red to blue.

» SO any edge that pivots into T staysin T.




Pivots

» Vertices can only change from red to blue.

» SO any edge that pivots into T staysin T.




[Sleator Tarjan 1983]

Fast implementation [Tarian Werneck 2005

» We maintain T and C* in dynamic forest data structures that
support the following operations in O(log n) amortized time:

> Remove and insert edges:
» CuT(uv), LINK(u,v)

Data Structures

> Maintain distances at vertices of T: and Network Algorithms

FOBERT ENORE TARIAN
L —

» GETNODEVALUE(v), ADDSUBTREE(A, V) S

> Maintain slacks at edges of C*:
* GETDARTVALUE(u—-vV), ADDPATH(A, u, v), MinPATH(u, v)

» So we can identify and execute each pivot in O(log n)
amortized time.



Planar MSSP summary [Klein 2005]

» We can (implicitly) compute distances from every boundary
vertex to every vertex in any planar map in O(n log n) time!

» More accurately: Given k vertex pairs, where one vertex of
each pair is on the boundary, we can compute those k
shortest-path distances in O(n log n + k log n) time.



Please ask questions!



Back to surfaces

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.
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Back to surfaces

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
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Back to surfaces

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.
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Back to surfaces

» Let > be any surface map with genus g. Fix a face f of .

» We want to compute the shortest path trees rooted at every
vertex of some “outer” face f.




Same Stl‘atGQY! [Cabello Chambers Erickson 2013]

» Move a point s continously around f, maintaining both the
shortest-path tree rooted at s and the complementary
slacks. Whenever a non-tree edge becomes tense, relax it.
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shortest-path tree rooted at s and the complementary
slacks. Whenever a non-tree edge becomes tense, relax it.
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Com plementa I‘y g rove [Cabello Chambers Erickson 2013]

» The dual cut graph X* = (G\T)* is no longer a spanning tree!

» Grove decomposition: partition X* into 6g subtrees of G*.

> Each subtree contains one dual cut path and all attached “hair”
> Maintain each subtree in its own dynamic forest data structure




Where are the pivots? [Cabello Chambers Erickson 2013]

» All active edges are dual to edges in some dual cut path.

» We can find and execute each pivot using O(g) dynamic
forest operations = O(g log n) amortized time.




HOW many inOtS? [Cabello Chambers Erickson 2013]

» Each directed edge pivots into T at most 4g times.

> Generalization of disk-tree lemma
> 4g = max # disjoint non-homotopic paths between two points in 2

» So the total number of pivots is O(gn)
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[Cabello Chambers Erickson 2013]
[Fox Erickson Lkhamsuren 2018]

Summary

» Given any surface map 2 with complexity n and genus g,
with non-negatively weighted edges, and a face f...

» We can (implicitly) compute shortest-path distances from
every vertex of f to every vertex of X in O(gn log n) time

> with high probability
> or in O(gn log? n) worst-case
> or in O(g2n log n) worst-case

» SO we can compute shortest nontrivial cycles in
O(g2?n log n) time



Thank you!
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